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Abstract. In this paper we propose a novel semantic label transfer
method using supervised geodesic propagation (SGP). We use super-
vised learning to guide the seed selection and the label propagation.
Given an input image, we first retrieve its similar image set from anno-
tated databases. A Joint Boost model is learned on the similar image
set of the input image. Then the recognition proposal map of the input
image is inferred by this learned model. The initial distance map is de-
fined by the proposal map: the higher probability, the smaller distance.
In each iteration step of the geodesic propagation, the seed is selected as
the one with the smallest distance from the undetermined superpixels.
We learn a classifier as an indicator to indicate whether to propagate
labels between two neighboring superpixels. The training samples of the
indicator are annotated neighboring pairs from the similar image set.
The geodesic distances of its neighbors are updated according to the
combination of the texture and boundary features and the indication
value. Experiments on three datasets show that our method outperforms
the traditional learning based methods and the previous label transfer
method for the semantic segmentation work.

1 Introduction

Semantic labeling, or multi-class segmentation, is a basic and important topic in
computer vision and image understanding. In the last decades, there has been a
great advance in this research area [1–5]. However it is still a challenging problem
for current computer vision technique to recognize and segment objects in an
image as human beings. Recently, some methods have been proposed to typically
solve this problem with trained generative or discriminative models [1–3] which
usually need a fixed dataset contains certain category classes. Moreover, some
approaches aim to integrate the low level features and context priori into the
bottom-up and top-down model [4]. These methods require the training proce-
dure on the fixed dataset for the parametric model and they are not scalable
with the number of object categories. For example, to include more object cat-
egory for the learning-based model, we need to train the model with additional
label categories to adapt the model parameters.
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Fig. 1. The objective. Our objective is to get the semantic segmentation of the input
image. This input image is taken from MSRC dataset[6].

With the increasing availability of image collections, such as LabelMe database
[7], large data driven methods have revealed the potential for nonparametric
methods in several applications, such as object and scene recognition [8] and
semantic segmentation [9, 10]. Since Liu et al. [9] addressed the nonparametric
scene parsing work as label transfer for the first time, several scholars have paid
attention on this topic [10–12] and given promising results. Label transfer, con-
sidered as transfer the label of existing annotation to the unlabeled input image,
involves two key issues to be solved. The first issue is how to retrieve proper
similar images from the database for a given input image. The second issue is
how to parse the input image with the annotated similar images. The first issue
is well studied in some previous works [8, 13] and is not the main focus of our
work. To solve the second issue, it needs a precise matching between the similar
images and the input image, which is the dominate point in [9–12].

As above label transfer methods usually use MRF optimization followed by
the matching, complete pixel-level or superpixel-level matching between similar
images and input image needed to be implemented. We thus take the idea of
partly matching on a little number of superpixels and selecting the initial seeds
to propagate the semantic label. Some segmentation works [14–16] mainly grow
regions based on the foreground/background seed employing the geodesic dis-
tance metric. In addition, Chen et al. [17] employ the geodesic propagation in
multi-class segmentation. Inspired by these works, we present a novel method
for label transfer using supervised geodesic propagation (SGP).

Given an input image, we first retrieve its K-Nearest-Neighbor (KNN) similar
images to form its similar image set from annotated database with GIST match-
ing [18]. Then the proposal map of the input image is inferred by the boosted
recognition model learned on its similar image set. Besides the proposal map, a
classifier for propagation indication is also learned on this similar image set. As
the initial distance map of input image has been derived from the proposal map,
we start our geodesic propagation guided by selected seed and the indication of
label propagation. Moreover, the texture and boundary features of input image
are also integrated into the propagation procedure.
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Our main contributions include: (1)A label transfer method with geodesic
propagation. (2)Supervised seed selection and label propagation scheme in geodesic
propagation for label transfer. Figure 1 shows our label transfer result.

2 Related Works

Liu et al. [9] firstly address the semantic labeling work into a nonparametric
scene parsing framework denoted as label transfer. Following the idea of label
transfer, Tighe and Lazebnik [10] use scene-level matching with global features,
superpixel-level matching with local features and Markov random field (MRF)
optimization for incorporating neighborhood context. However, these two non-
parametric methods both require an existing large training database. In addition,
finding highly similar training images for a given query image is difficult. To as-
sure that the retrieved images are proper, multiple image sets cover all semantic
categories in the input image are firstly obtained in [11]. Then a KNN-MRF
matching scheme is proposed to establish dense correspondence between the in-
put image and each found image sets. A Markov random field optimization is
used based on those matching correspondences. In [12], a ANN bilateral match-
ing scheme is proposed. Both the retrieval of partially similar images and the
parsing scheme are built upon the ANN bilateral matching. The test image is
parsed by integrating multiple cues in a markov random field. Inspired by these
works, our method take the similarity of retrieved images for semantic labeling
without precise pixel-level or super-pixel level matching.

Geodesic distance which is the shortest path between points in the space
is used as a metric to classify the pixels in [14]. The method proposed in [15]
is also based on the idea of seed growing geodesic segmentation. To avoid the
bias to seed placement and the lack of edge modeling in geodesic, Price et al.

[15] present to combine geodesic distance information with edge information in
a graph cut optimization framework. Gulshany et al. [16] introduce Geodesic
Forests, which exploit the structure of shortest paths in implementing the star-
convexity constraints. In addition to the methods [14–16] that mainly focus on
the foreground/background segmentation with geodesic distance, Chen et al. [17]
employ geodesic distance to multi-class segmentation by integrating color and
edge constraints on the edge weight. However, they [17] utilize no contextual
similarity in the propagation. Besides, we are obviously different from [17] in
the training set and the seed selection scheme. We are somehow similar with
[19, 20] in using GIST feature and boosting classifier, however, we use geodesic
propagation to get the deterministic solution while [19, 20] use CRF or MRF to
get the optimal solution. In addition, we utilize the contextual information of
both the similar images and the test image itself, while [19, 20] utilize only the
contextual information of the test image or test sequence.
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Fig. 2. Overview of our supervised geodesic propagation. (a) The input image. (b) The
dataset with manually annotations. Each color uniquely maps to a category label. The
semantic label maps are best viewed in color. (c) We firstly get the similar image set
from the dataset with Gist matching and re-ranking (Section 3.1). (d) Then we infer
the proposal map of the input image using the boosted model which is trained on this
similar image set (Section 3.2). (e) The propagation indicator is learned on the similar
image set (Section 3.3). (f) and (g) are the texture and boundary features of the input
image (Section 3.4). (h) The propagation indicator, the proposal map, the texture and
boundary features of the input image are integrated into the geodesic propagation
framework (Section 3.4) to get the semantic label result of the input image.

3 Supervised Geodesic Propagation

The workflow of our method is illustrated in Figure 2. Given an input image, our
method begins with getting the similar image set from the annotated dataset
through Gist matching [18]. We infer the proposal map of the input image for
seed selection. Then the proposal map, the texture and boundary features of
input image, and the contextual similarity of the similar images are integrated
into the geodesic propagation framework to get segmentation result. There is
no explicit energy to minimize in the framework, instead, multi-class semantic
labeling can be solved through geodesic propagation process.

The denotations in this paper are presented here for clarity. Given an in-
put image I, the semantic labeling problem is to assign each pixel x ∈ I with
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a certain label l ∈ L;L = {1, 2, · · · , N}. To solve this problem, we build up a
neighbor-connected graph G =< V,E >. In this paper, each superpixel i is a
vertex v in graph G and is assigned a specific label l contained in the dataset
through geodesic propagation procedure. The edge set E consists of edges be-
tween neighboring vertices. We define the weight of edge W (i, j) on a hybrid
manifold based on both texture and boundary feature to indicate the smooth-
ness between neighboring vertices i and j.

3.1 Similar Image Matching

In order to transfer labels of annotated images to the input image, the first thing
we need to do is to select proper images similar to the input image in seman-
tic categories and contextual informations. Since the similar image retrieval is
not the main focus of this paper, we use Gist matching as recent label transfer
methods [9–12] did. The gist descriptor [18] is employed to retrieve the K-Nearest
Neighbors from the dataset and the similar image set is formed with these neigh-
bors. After gist matching, the K-Nearest neighbors in the similar image set are
re-ranked in the following way. We over-segment the input image and each of its
similar image R ∈ {R} using algorithm described in [21]. Then each superpixel
i ∈ I is matched to a proper superpixel r(i) ∈ R which has the smallest match-
ing distance to i. The following distance metric is used to compute the matching
distance of correspondence in the re-ranking procedure. Given two images I and
R, the matching distance Dr(I, R) is scored as:

Dr(I, R) =
∑

i∈I,r(i)∈R

∥

∥(fvi − fvr(i))
∥

∥

2
(1)

Here, fvi is a 22 dimension descriptor of i, including average HSV colors,
coordinates and 17 dimension filter responses [6] of i. The Euclidean distance
metric is used in our implementation. After re-ranking the gist similar images
according to their matching scores, we get the top K similar images which are
denoted as {RK}. In our experiments, we use the {RK} as the similar image set
instead of {R}.

3.2 Proposal Map for Seed Selection

Previous works [14–16] utilize the manual scribbles as the initial seeds for each
category or objects which take the human priori into the segmentation task.
Instead, we take a dynamic seed selection for geodesic propagation. The similar
images in {RK} imply the possible categories in the input image. We assume
that categories l ∈ {RK} cover all the categories in I. To exploit the inherent
possibilities, the similar image set RK is used as the training set for the input
image I to learn the recognition model. The 17 dimension raw texton features
and Jointboost algorithm are used in the learning procedure as [22] did.

When we get the recognition proposal map of I, the initial geodesic distances
of all classes for each superpixel are defined upon this proposal map. Each su-
perpixel is temporarily assigned the initial label that has the max probability
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pl(i). According to equation 2, we get the initial geodesic distance of their tem-
porary class for each superpixel. Then a distance map of the input image can
be obtained: superpixels which have higher probabilities will have smaller initial
geodesic distance. In each propagation step, the undetermined superpixel with
the smallest distance of all classes is selected as the current seed to ensure the
estimation is the best in probability (see Section 3.4 for more details) .

Disinitial(i) = 1− pl(i) (2)

3.3 Propagation Indicator

Each image R ∈ {RK} is similar with the input image in some aspects, such
as the appearance and the contextual information. We thus assume that the
contextual similarity between the similar image set and the input image can
provide useful information for parsing the input image. Based on this assump-
tion, we take a supervised classification for label propagation. A set of classifiers
is learned on the similar image set to guide the propagation and each seman-
tic category has its corresponding classifier. We denote these classifiers as the
propagation indicators. In this section, we introduce how to get the indicator of
every semantic category. More details about how these indicators work in the
propagation procedure will be introduced in section 3.4.

Our indicator is used to classify whether to propagate label from superpixel
i to its neighbor j in the input image. For neighboring superpixels which are
classified as the same category, we propagate current label; otherwise, we do not
propagate current label. Our propagation indicators for each category are trained
using random forests [23, 24], a competitive non-linear model that predicts by
averaging over multiple regression trees. The random forests implementation
available online [25] is used with default parameters in our method.

To generate training samples for the indicator of each category l in {RK},
we get all neighboring superpixel pairs (i, j) as well as their category labels li
and lj known from the annotation. Note that pair (i, j) is different from pair
(j, i). For each pair (i, j), we denote fv(i, j) =< fvi, fvj > as a 44 dimension
feature vector, which includes average HSV colors, coordinates and 17 dimension
filter responses [22] of both fvi and fvj . If lj is consistent with li, then fv(i, j)
is taken as a positive sample of the indicator of label li, otherwise a negative
sample. All the features in fv are normalized in the range of [0, 1]. In the testing
procedure, we extract the fv(i, j) feature vector of neighboring superpixels and
then get the confidence exported by trained classifier as an indicator value for
propagation. As shown in equation 3, Tl(i, j) is the indicator function, conl(i, j)
is the confidence and ϕ is the threshold for indicator.

Tl(i, j) = 1[conl(i, j) > ϕ] (3)
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3.4 Geodesic Propagation

We take the definition that geodesic distance is the smallest integral of a weight
function over all possible paths from the seeds to a point [14, 17]. There is no ex-
plicit energy to be minimized in our propagation. Our objective is to assign each
pixel the category label which has the smallest geodesic distance. The weight W
of edge E on the graph G denote the smoothness relationship between neigh-
boring superpixels. There are many features can be included in the weights. To
propagate correct labels to superpixels, we exploit intra contextual information
of the input image by using color, texture and boundary features. These features
can indicate the real object probability distribution on the input image to a cer-
tain extent [6, 21]. In this section, we will introduce our geodesic propagation
procedure which simultaneously propagates geodesic distance of all the classes
efficiently.

Here we integrate two components to measure the weight of edge Wij on
graph G: the texture component and the boundary component. The weight func-
tion W between neighboring vertices is demonstrated in equation 4, where λ1

and λ2 are tuning parameters. Regions of different categories can commonly
present apparent texture disparities. We measure the Wtexture(i, j) with Eu-
clidean distance metric using a texture descriptor consist of average HSV colors
and 17 filter responses features [22]. The reliable Berkeley edge detector [21] is
applied combining color, brightness and texture cues to capture the boundary
confidence. The weight function for boundary component Wbdry is defined in
equation 5, in which θ is the threshold for boundary confidence Pb(·). We detect
the boundaries in pixel level and then convert these boundary confidences into
superpixel level.

W (i, j) = λ1Wtexture(i, j) + λ2Wbdry(i, j) (4)

Wbdry(i, j) = Pb(i, j, θ) (5)

Our supervised geodesic propagation algorithm starts with the initial geodesic
distance and initial labels for all the vertices. In each step of propagation, ver-
tices which have undetermined labels will be put into the unlabeled set Q to sort
for current seed that has minimum geodesic distance. The initial seed for propa-
gation is obtained by the recognition proposal map. Once a vertex is selected as
seed in a step, it is removed out of the set Q with its semantic label determined
as current label. The weight of edge W (i, j) and propagation indicator are inte-
grated in the propagation iteration to decide how to update geodesic distance.
In each step of geodesic propagation, the geodesic distance between a labeled
seed and its neighboring undetermined superpixels have to be updated according
to corresponding indicator. Suppose i has labeled as li and j has undetermined
label, then employ the propagation indicator of category li and get the indicator
confidence value Tl(i, j). If Tl(i, j) is true and W (i, j) is less than threshold θe,
then the geodesic distance Dis(j) of j is updated as Dis(i) + κW (i, j) and the
label of j is assigned li; otherwise Dis(j) and the label of j stay their current
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statuses. Figure 2 (h) illustrates the propagation process step by step. The se-
mantic labels are propagated from initial seed to the entire image after iterating
616 times. Comparing the 233, 369, 496 and 561 iteration, we can see that our
method work well around the object edges and our algorithm propagates seman-
tic label among multiple classes. The algorithm is convergent in a linear time
depending on the image size and we implement a queue introduced in [26].

Update Current seed 

Undetermined neighbors 

of Current seed 
No Update 

The 313 iteration The 313 iteration The 313 iteration The 616 iteration

(a) Seed Selection (b) Before Update Neighbors (c) After Update Neighbors (d) Final Result

Fig. 3. Illustration of one iteration. Take the three statuses of 313 iteration for details
instruction. Dark green means superpixels determinately labeled as the class grass and
dark blue determinately the cow. Light green means superpixels temporarily labeled as
the class grass and light blue temporarily the cow. (a) In the first status, the current
seed is selected (in red curve) and its label is determined as grass. (b) Then in the
second status, we get the undetermined neighboring superpixels of current seed for
their update of both label and geodesic distance. We only shows parts of its neighbors
for examples. The intra features of the input image and our indicator jointly make
decision that whether to update the current label and distance of these neighhors. (c)
In the third status, one neighbor is updated while the other is not. Then it is ready
for the next iteration. (d) In the final iteration (616), we get the final result with all
superpixels have their determined labels.

To illustrate how our supervised indicator guide the propagation direction,
we choose one step in the propagation as shown in Figure 3. Dark green demon-
strates superpixels determinately labeled as the class grass and dark blue de-
terminately the cow. Light green demonstrates superpixels temporarily labeled
as the class grass and light blue temporarily the cow. The first status is the
beginning of the 313 iteration: the current seed which is denoted in red curve
is selected with its label being determined as grass. Then in the second sta-
tus, the undetermined neighboring superpixels of current seed is figure out for
their update. The intra features of the input image and our indicator jointly
make decision that whether to update the current geodesic distances and labels
of these neighhors. Note that we show the 313 iteration for instance and the
314-615 iterations are omitted. The final iteration (616) is displayed for easy
comparison.

4 Experiments

In this section we investigate the performance of our method on several challeng-
ing datasets, and compare our results with several state-of-the-art works. The
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Table 1. Comparison of semantic segmentation accuracy over three datasets.

Method CamVid dataset MSRC dataset CBCL dataset

Zhang et al. [11] 84.4% - 72.8%

Shotton et al. [22] - 72.2% -

Tu [1] - 77.7% -

Shotton et al. [3] - - 61.9%

Our Method without GP 86.09% 75.4% 67.7%

Our Method 87.76% 79.2% 71.7%

Input Image Input ImageOur Result Our ResultGround Truth Ground Truth

Building Tree Sky Car Signsymbol Road

Pedestrian Fence Columnpole Sidewalk Bicyclist

Input Image Input ImageOur Result Our ResultGround Truth Ground Truth

Fig. 4. Our results on CamVid dataset. Left column shows the input image and middle
column shows our label transfer result. Ground truth is shown on the right. Legend is
shown on the bottom.

datasets are the Cambridge-driving Labeled Video dataset (CamVid) [27], the
Microsoft Research Cambridge (MSRC) dataset [6] and the CBCL StreetScenes
(CBCL) dataset [28]. Table 1 shows our semantic segmentation accuracy com-
pared with other methods. Our Method without GP indicates the accuracy of
the proposal map (without the Geodesic Propagation). Our Method indicates
the accuracy after our geodesic propagation procedure. We are the best on the
CamVid dataset and the MSRC dataset. Although our method is 1.1% lower
than [11] on the CBCL dataset, we are 3.46% higher than [11] on the CamVid
dataset. Moreover, our method performs better than [3] significantly on the
CBCL dataset.

In our experiments, the training procedure of Joint Boost model takes about
40 seconds per image and the training of label propagation scheme for each
image is also about 40 seconds. Geodesic propagation takes about 5 seconds. On
each dataset, we set 500 rounds to train the Joint Boost model for each test
image. All the experiments are implemented on PC computers. Some results on
the three datasets are shown in Figure 4, Figure 5 and Figure 6.
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Input Image Our Result Ground Truth Input Image Our Result Ground Truth

Flower Sign Bird Book Chair Road Cat Dog Body Boat

Building Grass Tree Cow Sky Water Face Car BikeAeroplaneSheep

Fig. 5. Our results on MSRC dataset. Left column shows the input image and middle
column shows our label transfer result. Ground truth is shown on the right. Legend is
shown on the bottom.

Car Pedestrian Bicycle Building Tree

Input Image Input ImageOur Result Our ResultGround Truth Ground Truth

y g

Sky Road Sidewalk Store

Fig. 6. Our results on CBCL dataset. Left column shows the input image and middle
column shows our label transfer result. Ground truth is shown on the right. Legend is
shown on the bottom.

4.1 CamVid Dataset

The CamVid dataset is the first collection of videos with object class semantic
labels. It provides 701 still images taken under different lighting condition (day
and dusk). The images in the original dataset are at the size of 960× 720 and
cover 32 object classes. To compare with others, we group the dataset into 11
categories as [11] did and resize the images to 480×360 pixels. The 11 domi-
nant categories are building, tree, sky, car, sign-symbol, road, pedestrian, fence,
column-pole, sidewalk, bicyclist. Besides, a void labeling indicates that the pixel
does not belong to the 11 categories. We use 5 similar images for each test image
to train the propagation indicator. The threshold θe and ϕ are set to be 0.8 and
0.75 respectively. The segmentation accuracy of our method is 87.76% as shown
in Table 1.
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4.2 MSRC Dataset

MSRC dataset is composed of 591 images of 21 object classes. We randomly
split this dataset into 491 training images and 100 testing images. The void

labeling is used to cope with pixels not belonging to a class in the dataset, and
the manual labeling is not aligned exactly with boundaries. Image in this dataset
is about 320×213 pixels. We use 10 similar images for each test image to train
the propagation indicator. The threshold θe and ϕ are set to be 0.5 and 0.6
respectively. The segmentation accuracy of our method on this dataset is 79.2%.

Figure 5 shows some results of proposed method on this dataset. The com-
parisons with previous methods are shown in Table 1. Our method is the best
among those methods on this dataset.

4.3 CBCL Dataset

The CBCL StreetScenes dataset contains 3547 still images of street scenes, which
includes nine categories: car, pedestrian, bicycle, building, tree, sky, road, side-
walk, and store. In our test, the pedestrian, bicycle, and store are not included as
[11] did. To compare with [11], we resize the original images to 320×240 pixels.
We use 5 similar images for each test image to train the propagation indicator.
The threshold θe and ϕ are set to be 0.3 and 0.6 respectively. The segmentation
accuracy of our method is 71.7% as shown in Table 1. Although our method is
not the best on this dataset (about 1 percent lower than [11]), we perform better
than [3] who has accuracy of 61.9%. Figure 6 shows the results of our method.

5 Conclusion and Discussion

In this paper we propose a supervised geodesic propagation for semantic label
transfer. Following the label transfer idea, given an input image, we first retrieve
its top K-Nearest-Neighbor similar images from annotated dataset with GIST
matching. We then infer the recognition proposal map of the input image with
the similar images based on the trained model. The similar image set is not only
used to learn the category proposals, but also used to train the label propagation
scheme. Unlike other label transfer methods which focus on matching the test
image with the similar images, we employ the supervised geodesic propagation
to utilize the similar images for semantic labeling of input image. Then we begin
geodesic propagation that starts from dynamic selected seeds. Experiments on
three datasets show that our method outperforms the traditional learning based
methods and the previous label transfer methods for the semantic segmentation
work.

Limitations and Future Work. As we consider the similar image set cover
all categories in the input image, our method is sensitive to the retrieved similar
images. If the retrieved images have little similarity with the test image, or the
retrieved images do not have the category in the test at all, our method will
fail. In future, we will pay attention on how to retrieve similar image set of
high quality. In addition, some parameters in our implementation are manually
selected. Next we will focus on adaptive parameter selection scheme.
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